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Our findings highlight that the natural variability of weather could be as
Important as mean sea level change in driving coastal extreme sea levels
over the next century. We use “grey swan” as a metaphor for a high-
conseguence event that we might expect on the grounds of natural
variability, is physically credible, but is not in our data record.
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Whilst our current record of sea level from tide gauges is fairly long, it is
arguably not long enough to derive robust statistics of the most extreme
storm surges (statistics of extreme sea levels contain a high level of

gcertainty)
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Venice floods as tides approach record levels
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For the East Coast of the UK, there are two noteworthy storm surges where

serious consequences and damage occurred: 31 Jan-1 Feb 1953 and 5-6
December 2013 due to Storm Xaver.
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Cyclone Xaver
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Xaver making landfall over Norway and Denmark

on 5 December 2013.

Type European windstorm,
extratropical cyclone, winter storm

Formed 4 December 2013

Dissipated 10 December 2013

Lowest 962 mb (28.41 inHg)

pressure

Highest 81 mph (130 km/h), Nissum Fjord,

winds Denmark

Highest gust 142 mph (229 km/h), Aonach
Mor, Scotland, U.K. [

Casualties 15

Cyclone Xavier
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Aqua Modis satellite view of Xavier crossing
Germany and Poland on 5 October 2017.

Type European windstorm
Formed 4 October 2017
Dissipated 6 October 2017

Lowest 985" mb (29.09 inHg)
pressure

Highest gust 202 km/h (126 mph), (Mountain
value) Snézka, Czech Republic

Beaufort 10-12
scale

[2]

Casualties 9 (7 Germany, 2 Poland)™

Areas Germany
Poland




Coastal flooding over the winter of 2013/2014 cost the UK £2.5
billion.

The wettest winter in 250 years
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Since the storm surge during the 5-6 December 2013 event gave rise to
extreme sea levels in several parts of the UK that were the highest ever
recorded, it begs the question could small perturbations to that weather
system create a more severe storm capable of generating an even larger
storm surge.

We used the December 2013 storm (Xaver) as our baseline and then applied
a number of small modifications to the weather system using a forecasting
tool (NWP grid editing tool) developed at the UK Met Office. This allowed us
to change the speed of movement of the storm, its central pressure (and
hence associated wind fields), and its direction of travel — whilst maintaining
the key physical properties of the storm system.

Adjustments were guided by a detailed analysis of all North Atlantic weather
systems since 1950, that led to large storm surges in the North Sea. The
storm surge and wave models used were those run operationally by the Met
Office in the UK
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NWP grid editing tool
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Figure 2. Unmodified (left) and modified (right) synoptic charts using the NWP Grid Editing
tool

Carroll, E.B., and T.D. Hewson (2005) NWP grid
editing at the Met Office, Weather and
Forecasting, 20, 1021-1033
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Tracks of the 113 storm events (NCEP/NCAR)
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Minimum atmospheric pressure
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Minimum atmospheric pressure
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Gridded Forward Speed

(d) Min forward speed (b) Mean forward speed
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RESULTS - NORTH SEA STORM

Changes in maximum surge level over simulation

4-6 December 2013 storm - TR o DS .| R
modifications: q - __gh! - - il - e ¢ bl s £ A
+ Run 1: Same track, same forward "™ Jes " B s T 1 EET s i I 0 .

speed, lower central pressure by 1 ‘ : : _ S

standard deviation. ——— & am— - e & - c
» Run 2: Same track, same forward N - \ : f, = Sl -

speed, make central pressure the 1 & ¢ f 3 :

Al

minimum obtained for each location.

» Run 3: Same track, same
pressures, slow movement of

depression down by 1 SD. 4 A 2 . =N 1 A =N A Vo
+ Run 4: Same track, same HERT Y 1807 ey b L A 1S 3" |

pressures, speed movement of

depression up by 1 SD. el e — e = % | o g — o= 2

» Run 5: Same pressure, same . - g BN —?\ 1 B g
speed, adjusted to the 1953 storm ' ¢ 3 r | & r A S Bl R
track. ) y

* Run 6: Same pressure, same
speed, adjust to the 1SD south
storm track.
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Maximum storm surge (Run — Xaver control)
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Wave model results
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Figure 3. Hs evolution during the real and the modified storms (North East UK coastal locatic

Santos et al (2017)
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With these synthetic storms, we were able to produce storm surges at all
tide gauges along the UK East Coast that were consistently higher than
those experienced during the December 2013 event. The most extreme
storm surge simulated was nearly one metre higher in the Thames
estuary than the levels recorded during the disastrous 1953 storm (see
table). This potential additional storm surge height is comparable to the
expected mean sea level rise by the year 2100 under the most severe
(RCP8.5) scenario

Quite coincidentally, this is the same level obtained if you add the highest
astronomical tide to the largest skew surge actually observed (shown in the
final column in the table). At Lowestoft we synthesised a level that exceeded
this simple, plausible metric

Changes to significant wave heights were obtained but, since we are
concerned with coastal waves, none of the significant wave heights were
comparable with extreme values obtained from wave observations

National
&) Ern e NERC SRS




Observed total RP (years) of Best estimate of Highest RP of synthetic HATMOSS
water level on 5 2013 event 1953 water level? | synthetic level storm surge
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With these synthetic storms, we were able to produce storm surges at all
tide gauges along the UK East Coast that were consistently higher than
those experienced during the December 2013 event. The most extreme
storm surge simulated was nearly one metre higher in the Thames estuary
than the levels recorded during the disastrous 1953 storm (see table). This
potential additional storm surge height is comparable to the expected mean
sea level rise by the year 2100 under the most severe (RCP8.5) scenario

Quite coincidentally, this is the same level obtained if you add the
highest astronomical tide to the largest skew surge actually observed
(shown in the final column in the table). At Lowestoft we synthesised a
level that exceeded this simple, plausible metric

Changes to significant wave heights were obtained but, since we are
concerned with coastal waves, none of the significant wave heights were
comparable with extreme values obtained from wave observations
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HAT+MOSS - a physically expected high value
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With these synthetic storms, we were able to produce storm surges at all
tide gauges along the UK East Coast that were consistently higher than
those experienced during the December 2013 event. The most extreme
storm surge simulated was nearly one metre higher in the Thames estuary
than the levels recorded during the disastrous 1953 storm (see table). This
potential additional storm surge height is comparable to the expected mean
sea level rise by the year 2100 under the most severe (RCP8.5) scenario

Quite coincidentally, this is the same level obtained if you add the highest
astronomical tide to the largest skew surge actually observed (shown in the
final column in the table). At Lowestoft we synthesised a level that
exceeded this simple, plausible metric

Changes to significant wave heights were obtained but, since we are
concerned with coastal waves, none of the significant wave heights were
comparable with extreme values obtained from wave observations
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Observed total RP (years) of Best estimate of Highest RP of synthetic HATMOSS
water level on 5 2013 event 1953 water level? | synthetic level storm surge
December 2013 obtained in
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Key messages

Our results show that small, meteorologically plausible, changes to
European storm systems can alter the height of storm surges
significantly. Wave fields are affected but less significantly near the
coast, in terms of extreme values

We found (as have others) that in semi-enclosed basins like the North
Sea, the most severe storm surges are caused by very slow-moving
depressions.

Ocean Modelling

Volume 143, November 2019, 101472

Impact of storm propagation speed on
coastal flood hazard induced by offshore
storms in the North Sea
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As for waves, for storm surges in certain geometries
duration can be important
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Figure 6.2: a) Residual volume during December 2013 Cyclone Xaver storm surge event.
Gridlines for z-aris denote midnight for each day. b) Histogram of independent residual
volume peaks over 100km?® during 2006-2016. Table-6.1 gives some more detail on the peaks

over 300km?.




Key messages

Long term mean sea level rise remains an important driver of future coastal
flood risk, with the UKCP18 Marine Report advising of (central estimate) sea
level rises for the East Coast of the UK of between 0.2 and 0.8m by the year
2100, and the 95% under RCP8.5 of a 1.15m rise (and our synthetic storm
surges are comparable with this upper value of future sea level rise).
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Key messages

For storm surges and waves, it is well recognised that all projections of future
storminess are limited by the current capability of climate models to accurately
simulate extreme winds.

The multi-decadal variability of winter storms — and therefore of storm surges —
Is dominated by natural variability.

For a ~50-year planning horizon it is likely that the greatest threat for coastal
extreme sea levels comes from the unobserved variability in storminess.

Our methods only enabled us to synthesise a relatively small number of grey
swan storms for the North Sea; further understanding would be gained by
developing techniques to synthesise a much larger statistical sample of
weather systems; and also studying other European coastlines
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Thank you
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Volume residual with surge only run
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